The Technology of Cooling Part 4: Closed Loop Liquid Cooling Solutions

1. Air to Water Heat Exchangers

Pfannenberg Air to Water Heat Exchangers use a supplied water source to remove the heat from the electrical cabinet. The heat from the enclosure is transferred to fluid and the heated fluid is then piped away adding no heat to the ambient environment.  Because there is no heat transfer to the ambient environment, there is no need to de-rate the units performance in high ambient conditions.

 

How do I know if a Air to Water Heat Exchanger is the right product for my application?

  • If there is a chilled water supply readily available at the enclosure.
  • If the environment has extreme conditions like extremely high ambients, extremely dirty or caustic, that make other systems not applicable.

 
Properly sizing a Air to Water Heat Exchanger

To properly size an Air to Water Heat Exchanger you must know the required cooling capacity in Watts, available water temperature and the dimensions of the unit and enclosure.

 

Utilizing performance curves to properly size cooling units:

Pfannenberg utilizes the DIN standard 35/35 °C when rating our cooling units. Many other companies use 50/50 °C, which provides a higher, non-usable value. Customers should use their own application temperatures to determine the proper cooling capacity of the system.

 
Important information when utilizing Air to Water Heat Exchangers for enclosure cooling:

  • The performance of an Air to water Heat Exchanger is directly related to the difference in the water temperature and the air temperature inside the enclosure.
  • To manage condensation, an external condensation evaporator (KVDTX) can be used.
  • The enclosure should be sealed to prevent the inflow of ambient air.
  • Use the door contact switch to impede operation with open doors and consequent excessive accumulation of condensation.
  • Setting the temperature to the lowest setting is not the optimal solution due to the condensation issues. The value we have preset on the cooling unit is a sound compromise between cooling the inside of the enclosure and the accumulation of condensation.
  • Make sure unit is level.

2. Chillers

A chiller uses a refrigeration cycle to remove the collected heat from a circulating liquid. As the liquid moves through a system of tubes and pipes it absorbs the heat generated by equipment and processes.  This generated heat is then transferred by the liquid back to the chiller where it is dissipated. Fluid is cooled and sent back into the system.

 

How do I know if a Chiller is the right product for my application?

  • When higher heat loads that exceed traditional enclosure cooling methods need to be managed.
  • When precise temperature control is required as part of the manufacturing process.
  • Large fluctuations in heat load requirements need to be managed.
  • It allows the source of cooling to be located separately from harsh environments.

 

Selecting the correct Pfannenberg Chiller

Choosing the best packaged chiller to meet the demanding requirements of today’s industrial applications can be complicated. For that reason, Pfannenberg designed a 6 step guide to help you select the best chiller depending on your environment, process and type of application. Click on the picture to open the PDF or use this link!

 

Important information when utilizing Chillers:

  • Chillers can be installed indoors if the area around the unit is relatively clean and the air is temperate.
  • Locating the chiller outside can be a good option and can improve the efficiency of the chiller depending on temperature.
  • Extreme temperatures can cause capacity issues or the need for additional options such as a low ambient package.
  • A chiller should be sized as close to the required capacity based on the desired chilled liquid supply temperature and the highest expected ambient temperature.

3. Combined Chillers and Air to Water Heat Exchangers

liquid_cooling_3D.jpg

When a Liquid Cooling Source is not available on site, use the combination of chillers and air/water heat exchangers to simplify the cooling of your processes, machines and controllers as part of a system based solution.

Via a closed pipeline system that uses a highly economical supply of cooled liquid (e.g. water, glycol or oil) as the cooling medium, temperature can be managed within your process and as the cooling medium for the air conditioning of control cabinets. When cooling cabinets with PWS Air/Water Heat Exchangers the thermal management is 100% independent from the ambient temperatures at the installation location.

Click here for more detailed information about Closed Loop Liquid Cooling Solutions!


A properly selected Thermal Management is key to guarantee the longevity of critical electronics. Pfannenberg place the klowledge and technical expertise of its engineers at your disposal for you to find the best solutions for your requirements.

Find the 3 previous articles of this “Technology of Cooling” serie:

Topics: Air Water Heat ExchangersEnclosure CoolingWater CoolingChillers

Liquid Cooling Solutions, the Best Choice for Complete Plant-wide Machine Cooling


When it comes to Thermal Management, cooling each machinery or electrical cabinet separately is usually the solution chosen by most of the industries. However, this leave a valuable optimization potential untapped.

Maximum efficiency cooling for a whole system can be achieved with a cooling system solution consisting of air to water heat exchangers and water-based chillers. These ‘Liquid Solutions’ cool the complete assembly and offer significant benefits compared to traditional approaches such as cooling with ambient air.

How does it work?

A closed loop cooling or semi open system is used to provide cooling to the entire plant assembly. These might be electrical enclosures, processes or individual machine parts such as spindles, motors or hydraulic equipment.

Liquid Cooling Solutions

In a closed-loop system, electrical enclosures or assemblies are cooled with cold water at a specified inlet temperature which is pumped through a pipe system. Flowing through the electrical enclosures or assemblies, the water is warmer when it returns to the chiller. This creates a temperature delta which the chiller equalizes by cooling the water from the outlet temperature down to the inlet temperature.

The process chiller system feeds cold water into the application inside the factory hall or outdoors and the constant flow temperature significantly improves machine availability and machining accuracy. There is no other cooling media being as efficient as water cooling.

The best Liquid Cooling Solution: Combined Chillers and Air to Water Heat Exchangers

The combination of application-specific process chillers with air to water heat exchangers is particularly suitable for applications in which heat must not be dissipated in the immediate environment, where the ambient air is too aggressive to allow the use of traditional enclosure cooling units, where high-level protection is required (up to IP 65) or where the cooling devices must be maintenance-free.

The air to water heat exchanges are all cut-out-compatible and fit in the housing of all available electrical enclosures. This means that machine and plant manufacturers, end users and distributors benefit from higher flexibility, and save costs on warehousing and servicing.

The advantage of an intelligent system solution with application-specific chillers and air to water heat exchangers is that the dissipated heat can be moved directly from the factory shop floor via air channels or an outside chiller system. It also offers very high reliability and problem-free operation as all the components of the system are chosen to work together perfectly. Low maintenance, cut-out-compatibility and energy efficiency optimize energy consumption and keep operating costs to a minimum. The integrated concept and numerous options allow the system to be adapted to almost any application, even with changing conditions.

Application-specific configuration

Pfannenberg’s experts work with their customers to develop application-specific chiller systems. To achieve exactly the right configuration, it is essential to:

  1.  First determine the heat load for the whole assembly.
  2. The second step is to specify the type of cooling medium (ideally water), the target temperature and the flow quantity which the system must deliver in the actual application. This process should take into account how the heat is transmitted to the cooling medium and the type of refrigerant necessary to operate the refrigerant circuit. The type of cooling medium and which chiller model is used depends on whether usable process water is available at the factory and if so, whether it is warm or cold (see overview of device variants).
  3. An analysis of the environmental conditions prevailing where the chiller system is to be installed is also carried out. For example, there might be high temperatures and contaminated air indoors, while outdoors the temperature might fluctuate widely. Both of these factors can have an impact on the configuration of the chiller system, making accessories such as filter fans or crankcase heating necessary. Taking the temperature of the cooling medium at the inlet and the highest likely ambient temperature as a basis, Pfannenberg determines the best chiller model with the correct characteristic curves for the job.
  4. The final stage in the application-specific configuration is to think about whether the selected standard version meets the other requirements of the application, such as performance data, control and regulation options, available space, certifications and color. It is then decided whether standard options are necessary or helpful and if so, which. With numerous available options available, the EB chillers meet the requirements of practically any application in industrial environments.

Pfannenberg offers installation-ready chiller systems with performance specifications ranging from 1 to 160 kW. The modular concept of the EB series allows users to select from up to 30 standard options. These include hydraulic bypass/relief valves, flow monitors, tank level monitors, air filters, air filter monitors, check valves, solenoid valves, single alarm display and UL certification. Special solutions are also available. Click here to determine the correct chiller for your application!


With products that include filterfans, heaters, industrial air conditioners, air to water heat exchangers, packaged chillers, and signaling devices, Pfannenberg offers a full range of thermal management solutions for all types of industries. Standard options such as stainless steel materials, NEMA 4/4X enclosures, and washdown duty construction allow these time-tested products to be seamlessly incorporated into even the most demanding applications.

Have a question regarding which equipment is best for your application? Ask Us Here.

Topics: Air Water Heat ExchangersEnclosure CoolingThermal ManagementWater Cooling,Packaged ChillersChillers

Closed Loop Liquid Cooling Reduces Downtime, Maintenance & Repair Costs for Commercial Bakeries


Pfannenberg’s Cooling Solutions Help Keep Equipment Running for One of the Fastest Growing Independent Wholesale Bakers in America.

Flour is one of the paramount enemies of electrical enclosures and enclosure air conditioners, particularly in the make-up area of a commercial bakery.

 Pfannenberg is your proven partner for complex thermal management challenges in the baking industry. High security classes of equipment and corrosion-resistant construction materials resist even the most difficult ambient conditions.

Keeping the electronics cool which power the machines is essential to the entire operation of the Schwebel Baking Company. Without the electrical enclosures staying cool, the machines fail and require replacement or downtime for repair. Inside a baking facility, there is lots of dust/flour throughout the air and can clog the operating machines.

Pfannenberg’s PWS Series Air to Water Heat Exchangers were the precise solution for Schwebel’s manufacturing process. Incorporating closed loop cooling with Air/Water Heat Exchangers improved performance, reduced maintenance, was energy efficient, and prevented unplanned repairs.


Click Here to Download the Bakery Air to Water PWS Case Study.


Be sure to follow our  Food and Beverage LinkedIn Showcase Page!

Topics: Thermal ManagementNorth AmericaFood & BeverageCommercial BakeriesBakery,Case Study

Selecting the Proper Equipment for Food and Beverage Applications


Proper thermal management is key for saving resources and keeping electronics (and equipment) up and running on a consistent basis. It is important to understand the various types of cooling methods available and how the ambient conditions may effect the product chosen.  Choosing the wrong method may lead to a solution that is undersized or oversized, or fails prematurely due to being specified for incompatible ambient conditions.


Selection of the preferred thermal management method, based on various environmental conditions:

Click here to view our thermal management selection guide.


With products that include fans, heaters, packaged air conditioners, air-to-water heat exchangers, packaged process chillers, and signaling devices, Pfannenberg offers a full range of thermal management solutions for the food and beverage industry. Standard options such as stainless steel materials, NEMA 4/4X enclosures, and washdown duty construction allow these time-tested products to be seamlessly incorporated into even the most demanding food and beverage processing applications.


Have a question regarding which equipment is best for your application? Ask Us Here.

Be sure to follow our NEW Food and Beverage LinkedIn Showcase Page!

Topics: Air Water Heat ExchangersFilterfansCooling UnitsThermal ManagementHeatersFood & BeverageChillersAir Air Heat Exchangers

Pfannenberg Food & Beverage Applications: Air/Water Heat Exchangers

The Complete Liquid-Cooled Solution for F&B Industrial Control Enclosures

For over 50 years Pfannenberg has been a leader in thermal management solutions.  From simple Fan Cooling and Packaged Air Conditioners to more complex water cooled applications, our expertise helps ensure industrial electronics operate at peak efficiency and extended service life.

Pfannenberg’s Air/Water Heat Exchangers offer a solutions to fix your thermal management problems in washdown areas of the plant or areas with high amounts of particulate . The sealed cabinet provides contaminant-free component cooling without adding heat to the local environment.  It provides an excellent economic solution where plant water is available or when used in conjunction with a process chiller.  It’s sealed design and available stainless steel, NEMA Type 4/4X construction provides a maintenance free solution with no exposed fans or maintenance of filters required.

Typical Food and Beverage Applications:

  • Ingredient Mixers
  • Product Cooling/Drying
  • Packaging Automation Equipment
  • Inspection Machines
  • Oven Controls

For applications which require local enclosure cooling using a remotely located source of refrigeration, PWS Series Air/Water Heat Exchangers provide the perfect solution.  Paired with our CC or  EB Series Chillers, the air/water heat exchanger provides a total cooling solution that manages process and/or control enclosure heat gain and effectively removes it from the processing area.  Single source responsibility for the complete system ensures properly matched components that are engineered to work together – and to provide a custom fit to the most complex food processing equipment.


Topics: Air Water Heat ExchangersEnclosure CoolingCooling UnitsThermal ManagementNorth AmericaWater CoolingPackaged ChillersFood & Beverage

Liquid Cooling Solutions for Commercial Bakery Electrical Enclosures


Are the VFDs in your Commercial Bakery failing due to high amounts of flour and moisture entering your electrical enclosure?

Pfannenberg is your proven partner for complex thermal management problems in the baking industry. High security classes of equipment and corrosion-resistant construction materials resist even the most difficult ambient conditions.

Looking for another energy savings solution? Pfannenberg’s PWS Air/Water Heat Exchangers are ideal for cooling your electrical components. Designed for maintenance free operation in the most demanding areas of a plant.

Click here to download the NEW Pfannenberg Bakery Flyer!

Also, be sure to visit us at IBIE 2016 in Las Vegas, NV — October 8th-11th at Booth #9247!

Topics: Air Water Heat ExchangersEnclosure CoolingCooling UnitsThermal ManagementNorth AmericaWater CoolingFood & Beverage

The Advantages of Air To Water Heat Exchangers for Thermal Management in Harsh Environments


Money-saving approach yields longer service life while conserving energy.

Control Panel Cooling Technique Helps Mitigate Hydrogen Sulfide Corrosion Problems with Wastewater Pumping Systems

Air To Water Heat Exchangers provide an energy efficient and reduced manintenance method for cooling electrical control panels.

Enclosure Cooling Units offer a straightforward active-cooling technique for pump control panels, however, they are not necessarily the best choice for all installation locations. Dirt, dust, and other airborne contaminants can clog condenser coils; while corrosive gasses in the environment can lead to premature failures.On the other hand, Air To Water Heat Exchangers can satisfy the same requirements without circulating ambient air within the housing, thereby eliminating the clogging and corrosion problems associated with airborne contamination.

A common threat to organic wastewater handling and treatment systems is the presence of hydrogen sulfide gas. Not only is this gas toxic to humans, but it also contributes heavily to corrosion problems in pipes, structures, instrumentation, and electrical systems. Lift stations and pumping systems are particularly vulnerable as H2S sour gas readily attacks copper used in wires, electrical contacts, and cooling units used on motor control centers (MCC’s).

Electronics cooling is vital for MCC’s containing the variable frequency drives (VFD’s) that are used to maintain efficient operation by conserving energy through regulating the speed at which pumps operate. Since VFD’s generate a considerable amount of heat, it is necessary to employ an active enclosure cooling technique in order to keep VFD’s operating within acceptable temperature limits. The absence of effective cooling will quickly allow VFD’s to overheat, shut down, or even catastrophically fail. In addition to being an economic loss, such outages disrupt production and affect the efficiency of plant operations.

Effective electrical enclosure cooling for environments where H2S gas is present must utilize a closed loop technique to ensure that sour gas is not introduced into the enclosure where it could harm wiring, electrical connections, switches, and other components. In fact, for many installations it is advantageous to deploy an air or nitrogen purge system which creates a positive pressure within the enclosure in order to keep undesirable ambient elements, including sour gas, outside of it. As opposed to an open loop system that uses fans to draw ambient air into and push heat out of the enclosure, a closed loop system maintains isolation of the ambient air and permits the NEMA rating of the electrical enclosure to be maintained. Examples of closed loop cooling equipment for electrical enclosures include cooling units (also known as enclosure air conditioners or enclosure AC) and Air To Water Heat Exchangers.

Cooling units offer the advantage of a being a plug and play solution – they simply hang onto the outside of the enclosure and are connected to power already available inside the enclosure. However, these compressor-based refrigeration systems consume a fair amount of energy and require periodic maintenance. Additionally, to endure the sour gas environment, exposed copper pipes and condenser coils must be treated with a conformal coating – which is not necessarily standard. Over time, the need to clean condenser coils – which may require partial disassembly of the cabinet – can lead to scratched paint, compromised coatings, and eventual corrosion.

Air-to-water Heat Exchangers offer several advantages making them the preferred method for closed-loop, electrical enclosure cooling. Acquisition and operating expenses are significantly lower than those of a compressor-based cooling unit.

Additionally, this product is virtually maintenance free and since there is no ambient air circulation within the unit, there is no risk of H2S sour gas corrosion to internal components.

There are, however, two challenges with acquiring and implementing these units:

  • The units must be specified as the solution of choice with the MCC or pump system integrator.
  • The units must be connected to a viable source of clean water or coolant to circulate through the heat exchanger coil.

Another viable implementation is to consider retrofitting cooling units with air-to-water heat exchangers. This modification can be readily accomplished without difficulty since some units share the same enclosure cut-out. For dissimilar cutouts, an adaptor plate may be required to reduce the size of the opening.

Click here to download the Case study in PDF

Need more information on Pfannenberg’s PWS Air to Water Heat Exchangers? Click here and discover all the advantages of this product!


Topics: Air Water Heat ExchangersEnclosure CoolingThermal ManagementWater CoolingWater TreatmentWastewater Treatment

New Thermal Management Solutions with Cloud-Based Remote Monitoring


On the way to Industry 4.0 with Pfannenberg’s innovative Thermal Management Solutions

Pfannenberg will unveil its Thermal Management Solution with cloud-based remote monitoring at Europe’s leading exhibition for electric automation, SPS IPC Drives in Nuremberg, Germany.

Communication is provided by a compact device with an integrated SIM card, which receives the relevant data from the connected cooling units via Modbus – a Building Management Protocol – and transmits it to the cloud over a secure mobile telecommunication link without any need for access to the company’s IT infrastructure.

The solution developed in cooperation with T-Systems enables users or systems to retrieve status data, diagnostic information and alarm notifications from the cooling units, live and independent of location, through a web browser, or to integrate the data directly into their applications.

From November 24-26th,  visitors will have the opportunity to see a working model on display at Stand #339 in Hall 5, and discuss this innovative Thermal Management solution with experts from Pfannenberg to learn more about its functionality and deployment options.

“The smart factory is the wave of the future. As an innovative medium-size company with over 190 patents worldwide, making our cooling solutions fit for networked products is a natural choice”, says Andreas Pfannenberg, Managing Director of the Pfannenberg Group. “With the premium controllers of the newest generation, our cooling units are able to provide a wealth of relevant data. Thanks to the cloud solution, employees in production management, the service department or the maintenance department, as well as higher-level monitoring systems, receive information about possible malfunctions or imminent failures promptly, wherever they are. This enables them to respond quickly before a serious incident occurs, which helps increase machine availability.”

Next-generation of Thermal Management

The Thermal Management demo system on display at the trade show will consist of a two-compartment switchgear cabinet with a semi-recessed DTI cooling unit on one side and a semi-recessed PWI series Air to Water Heat Exchanger on the other side, each equipped with a premium controller. There are three heaters in each cabinet compartments, which can be turned on individually at the front using door-mounted switches to simulate heat loads. On an external monitor visitors will be able to observe how the Enclosure Cooling Unit reacts to changes in the heat load or when opening the cabinet door.


Contact us today to learn more about this innovative solution!

Topics: Air Water Heat ExchangersEnclosure CoolingCooling UnitsThermal Management

Pfannenberg becomes a proudly member of BEMA association


BEMA (Bakery Equipment Manufacturers and Allieds) is an international, non-profit trade association representing leading Bakery and Food Equipment manufacturers and suppliers, whose combined efforts in research and development have led to the continual improvement of the baking and food industries.

This affiliation confirms our commitment to the Baking Industry with our specifically designed Liquid Cooling Solutions perfectly adapted to aggressive ambient air environments and systems that require a very high IP class (up to IP 65).

To avoid operations grinding to a halt, specifically those with flour and high particulate in the air, Pfannenberg’s PWS Series Air to Water Heat Exchangers are an ideal solution for efficient, trouble free cooling for electrical enclosures.. Use an existing glycol or cool water source already available in the factory to cool your electrical cabinets.

If you need a cool liquid source, Pfannenberg also has a complete line of Chillers to complement our Air/Water Heat Exchangers.

 

Click here to learn more about the BEMA association

 

Topics: Air Water Heat ExchangersEnclosure CoolingThermal ManagementCompany News & Annoucements

How to Choose the Proper Enclosure Cooling Product


Reliable Thermal Management:

Understanding the proper thermal management of your electrical enclosures is critical in keeping your production process up and running. Trouble-free production is only guaranteed if the sensitive climate inside your electrical enclosures is maintained, even the slightest overheating of the electronic component units can result in serious consequences such as production downtime and premature aging of parts. It’s important that you choose the proper enclosure cooling

Choosing the Best Solution for Enclosures and Electronics Cooling:

Before choosing the best cooling solution you need to know your environment. Is the control cabinet placement in an environment where the air is full of dust or oil? Is the equipment to be cooled exposed to the weather, i.e. moisture and sunshine? How large are the designated dimensions of the required cooling units? Once these questions have been clarified completely, you can move on to choosing the best cooling solution for your application.

Common Thermal Management Products:


FilterFans®

  • If the ambient temperature is always lower than the temperature required in the electrical enclosure, then  Filterfans® represent an economical solution for thermal management of electrical enclosures.


Enclosure Air Conditioner

  • If cooling cannot be accomplished by the outside air
  • If the temperature required inside the electrical cabinet should be equal to or lower than the ambient temperature
  • If the ambient air is strongly contaminated with oil or conductive dusts
  • When higher ingress protection is required (Type rating)


Air to Water Heat Exchanger

  • If a chilled water supply is available
  • If aggressive ambient air restricts the use of conventional cooling units
  • If a very high IP class is required (up to IP 65)
  • If a maintenance-free cooling unit  is required
  • If energy efficiency is considered at a plant level concern

Need Help choosing the correct cooling solution?

If you need help choosing the proper cooling product for your application check out our Pfannenberg Sizing Software, it’s a free tool for you to use.

Topics: Air Water Heat ExchangersFilterfansEnclosure CoolingCooling Units